Chain Event Graphs (CEGs) are a recent family of probabilistic graphical models - a generalisation of Bayesian Networks - providing an explicit representation of structural zeros, structural missing values and context-specific conditional independences within their graph topology. A CEG is constructed from an event tree through a sequence of transformations beginning with the colouring of the vertices of the event tree to identify one-step transition symmetries. This coloured event tree, also known as a staged tree, is the output of the learning algorithms used for this family. Surprisingly, no general algorithm has yet been devised that automatically transforms any staged tree into a CEG representation. In this paper we provide a simple iterative backward algorithm for this transformation. Additionally, we show that no information is lost from transforming a staged tree into a CEG. Finally, we demonstrate that with an optimal stopping criterion, our algorithm is more efficient than the generalisation of a special case presented in Silander and Leong (2013). We also provide Python code using this algorithm to obtain a CEG from any staged tree along with the functionality to add edges with sampling zeros.
翻译:事件链图图( CEGs) 是最近一组概率性图形模型 — — 一种贝叶西亚网络的概观 — — 提供了结构零、结构性缺失值和其图形表层中特定环境的有条件独立性的明确表达。 一个 CEG是从事件树构造成的, 由事件树的彩色开始, 通过一系列转换过程来构造。 以事件树的顶部颜色为起点, 来识别一个阶段过渡的对称。 这棵彩色事件树, 也被称为一个阶梯树, 是用于这个家族的学习算法的输出。 令人惊讶的是, 尚未设计出一个将任何阶梯树自动转换为 CEG 代表的通用算法。 在本文中, 我们为这种转换提供了简单的迭代后向算法。 此外, 我们显示, 在将一个阶梯树转换为 CEG时, 没有丢失任何信息。 最后, 我们的算法比Silander 和 Leong (2013) 中显示的一个特殊案例的概括性更有效率。 我们还提供Python 代码, 使用这个算法从任何阶层树获得一个 CEG, 和功能加 边缘为零。