The paper presents transfer functions for limited memory time-invariant linear integral predictors for continuous time processes such that the corresponding predicting kernels have bounded support. It is shown that processes with exponentially decaying Fourier transforms are predictable with these predictors in some weak sense, meaning that convolution integrals over the future times can be approximated by causal convolutions over past times. For a given predicting horizon, the predictors are based on polynomial approximation of a periodic exponent (complex sinusoid) in a weighted $L_2$-space.
翻译:本文为连续时间过程的有限内存-变化性线性整体预测器提供了转移功能, 使相应的预测内核具有约束性支持。 显示指数衰减的Fourier变异过程可以预测, 而这些预测器在某种微弱的意义上是可以预测的, 也就是说, 未来时间的组合可以被过去时间的因果变异所近似。 对于特定的预测地平线, 预测器以加权的 $L_ 2 空间中周期超强( complex sinusoid) 的多位近似值为基础 。