Vision transformers (ViTs) have been an alternative design paradigm to convolutional neural networks (CNNs). However, the training of ViTs is much harder than CNNs, as it is sensitive to the training parameters, such as learning rate, optimizer and warmup epoch. The reasons for training difficulty are empirically analysed in ~\cite{xiao2021early}, and the authors conjecture that the issue lies with the \textit{patchify-stem} of ViT models and propose that early convolutions help transformers see better. In this paper, we further investigate this problem and extend the above conclusion: only early convolutions do not help for stable training, but the scaled ReLU operation in the \textit{convolutional stem} (\textit{conv-stem}) matters. We verify, both theoretically and empirically, that scaled ReLU in \textit{conv-stem} not only improves training stabilization, but also increases the diversity of patch tokens, thus boosting peak performance with a large margin via adding few parameters and flops. In addition, extensive experiments are conducted to demonstrate that previous ViTs are far from being well trained, further showing that ViTs have great potential to be a better substitute of CNNs.


翻译:视觉变压器(ViTs)是革命神经网络(CNNs)的替代设计范式。然而,ViTs的训练比CNN公司要难得多,因为它对学习率、优化率和暖化度等培训参数敏感。培训困难的原因在“cite{xiao2021early}”中进行了经验分析,作者们推测,这个问题不仅在于ViT模型的Textit{patchfatchify-stem},并且建议早期的革命有助于变压器看得更好。在本文中,我们进一步调查了这一问题,并扩大了上述结论:只有早期的革命无助于稳定培训,而对于在\textit{conv-stem} (\textit{conv-stem})中扩大的ReLU操作也很重要。我们从理论上和实验角度都证实,在ViT模型中扩大的ReLU规模不仅改善了培训稳定性,而且还增加了补装品的多样性,因此,通过经过培训的参数和软质变的远的模型来提升了巨大的优势。

0
下载
关闭预览

相关内容

【Tutorial】计算机视觉中的Transformer,98页ppt
专知会员服务
143+阅读 · 2021年10月25日
专知会员服务
29+阅读 · 2021年7月30日
最新《Transformers模型》教程,64页ppt
专知会员服务
307+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
3+阅读 · 2022年4月19日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
【Tutorial】计算机视觉中的Transformer,98页ppt
专知会员服务
143+阅读 · 2021年10月25日
专知会员服务
29+阅读 · 2021年7月30日
最新《Transformers模型》教程,64页ppt
专知会员服务
307+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员