This paper introduces a new generic problem to the literature of Workforce Scheduling and Routing Problem. In this problem, multiple workers are assigned to a shared vehicle based on their qualifications and customer demands, and then the route is formed so that a traveler may be dropped off and picked up later to minimize total flow time. We introduced a mixed-integer linear programming model for the problem. To solve the problem, an Adaptive Large Neighborhood Search (ALNS) algorithm was developed with problem-specific heuristics and a decomposition-based constructive upper bound algorithm (UBA). To analyze the impact of newly introduced policies, service area, difficulty of service, distribution of care, and number of demand nodes type instance characteristics are considered. The empirical analyses showed that the ALNS algorithm presents solutions with up to 35% less total flow time than the UBA. The implementation of the proposed drop-off and pick-up (DP) and vehicle sharing policies present up to 24% decrease in total flow time or provide savings on the total cost of service especially when the demand nodes are located in small areas like in urban areas.


翻译:本文为劳动力排期和出勤问题文献提出了一个新的通用问题。在此问题上,多工人被分配到一个基于其资格和客户要求的共用车辆上,然后形成路线,以便将旅行者丢弃,然后取走,以尽量减少总流量时间。我们为该问题采用了混合整数线性编程模式。为解决这一问题,开发了一个适应性大邻里搜索算法,配有特定问题的超速和基于分解的建设性高约束算法(UBA)。为了分析新推出的政策、服务领域、服务困难、护理分配和需求节点类型特点的影响,考虑了经验分析结果分析表明,ALNS算法提出的解决办法比UBA总流时少35%。拟议的辍学和集款(DP)和车辆共享政策的实施在总流量时间上减少了24%,或者在服务总成本方面节省了费用,特别是在需求节点位于像城市地区这样的小地区的情况下。</s>

0
下载
关闭预览

相关内容

【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
0+阅读 · 2023年4月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员