We propose a scalable robust learning algorithm combining kernel smoothing and robust optimization. Our method is motivated by the convex analysis perspective of distributionally robust optimization based on probability metrics, such as the Wasserstein distance and the maximum mean discrepancy. We adapt the integral operator using supremal convolution in convex analysis to form a novel function majorant used for enforcing robustness. Our method is simple in form and applies to general loss functions and machine learning models. Exploiting a connection with optimal transport, we prove theoretical guarantees for certified robustness under distribution shift. Furthermore, we report experiments with general machine learning models, such as deep neural networks, to demonstrate competitive performance with the state-of-the-art certifiable robust learning algorithms based on the Wasserstein distance.
翻译:我们提出一个可以伸缩的稳健学习算法,将内核平滑和稳健优化结合起来。我们的方法是基于基于概率度量的分布稳健优化分析角度,如瓦森斯坦距离和最大平均值差异。我们用螺旋分析的超能力进化分析将整体操作者调整成一个用于加强稳健的新的主要功能。我们的方法形式简单,适用于一般损失函数和机器学习模型。探索与最佳运输的连接,我们证明在经销转移时有经认证的稳健度的理论保证。此外,我们报告与普通机器学习模型的实验,如深神经网络,以显示基于瓦森距离的最先进的、可认证的稳健学习算法的竞争性表现。