Direction finding and positioning systems based on RF signals are significantly impacted by multipath propagation, particularly in indoor environments. Existing algorithms (e.g MUSIC) perform poorly in resolving Angle of Arrival (AoA) in the presence of multipath or when operating in a weak signal regime. We note that digitally sampled RF frontends allow for the easy analysis of signals, and their delayed components. Low-cost Software-Defined Radio (SDR) modules enable Channel State Information (CSI) extraction across a wide spectrum, motivating the design of an enhanced Angle-of-Arrival (AoA) solution. We propose a Deep Learning approach to deriving AoA from a single snapshot of the SDR multichannel data. We compare and contrast deep-learning based angle classification and regression models, to estimate up to two AoAs accurately. We have implemented the inference engines on different platforms to extract AoAs in real-time, demonstrating the computational tractability of our approach. To demonstrate the utility of our approach we have collected IQ (In-phase and Quadrature components) samples from a four-element Universal Linear Array (ULA) in various Light-of-Sight (LOS) and Non-Line-of-Sight (NLOS) environments, and published the dataset. Our proposed method demonstrates excellent reliability in determining number of impinging signals and realized mean absolute AoA errors less than $2^{\circ}$.
翻译:基于RF信号的定位和定位系统受到多路传播的重大影响,特别是在室内环境中。现有的算法(如MUSIC)在多路或信号系统薄弱的情况下,在解决Aoreval Agle(AoA)方面表现不佳。我们注意到,数字抽样的RF前端可以方便地分析信号及其延迟组件。低成本软件定义无线电模块能够使频道国家信息(CSI)的广频提取,促使设计一个强化的Airearval(AoA)解决方案。我们建议采用深学习方法,从SDR多通道数据的单一快照中得出AoAoA。我们比较和对比基于角度分类和回归模型的深学习,以便准确估计信号及其延迟组件。我们在不同平台上安装了推断引擎,实时提取AoAAA,表明我们的方法具有计算性。我们收集了IQ(S-Ircal-A-Iloadval(S-Oright-ILAL-IL)的准确度和不甚透明度(Oright-L-IL-IL-L-IL-IL-IL-IL-IL-IL-IL-IL-IL-IL-IL-IL-IL-IL-IL-IL-IL-IL-IL-IL-L-IL-IL-IL-L-L-L-L-L-IL-L-L-L-L-IL-IL-L-IL-L-L-IL-IL-IL-IL-L-L-L-L-IL-L-L-L-I-I)的精确性样标选)的精确图样本样本的精确性)的精确的精确性标选)。