The increasing importance of such fields as embedded systems, pervasive computing, and hybrid systems control is increasing attention to the time-dependent aspects of system modeling. In this paper, we focus on modeling conceptual time. Conceptual time is time represented in conceptual modeling, where the notion of time does not always play a major role. Time modeling in computing is far from exhibiting a unified and comprehensive framework, and is often handled in an ad hoc manner. This paper contributes to the establishment of a broader understanding of time in conceptual modeling based on a software and system engineering model denoted thinging machine (TM). TM modeling is founded on a one-category ontology called a thimac (thing/machine) that is used to elaborate the design and analysis of ontological presumptions. The issue under study is a sample of abstract modeling domains as exemplified by time. The goal is to provide better understanding of the TM model by supplementing it with a conceptualization of time aspects. The results reveal new characteristics of time and related notions such as space, events, and system behavior.


翻译:嵌入系统、普遍计算和混合系统控制等领域的重要性日益增加,这日益引起人们对系统建模中时间依赖的方面的重视。在本文件中,我们注重概念模型的时间。概念时间是概念模型中的时间,时间的概念概念并不总是起到主要作用。计算中的时间模型远没有展示统一和全面的框架,而且往往以临时方式处理。本文件有助于在概念模型中建立对时间的更广泛了解,这种模型以软件和系统工程模型(TM)为标志。TM建模的基础是一种叫做硫玛克(thimac/rachy)的单类肿瘤学,用于设计和分析肿瘤假设。研究中的问题是一个抽象模型的样板,用时间来说明。目的是通过时间概念化来更好地了解TM模型。结果揭示了空间、事件和系统行为等时间和相关概念的新特点。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
39+阅读 · 2020年9月6日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
39+阅读 · 2020年9月6日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员