There has been an arising trend of adopting deep learning methods to study partial differential equations (PDEs). In this paper, we introduce a deep recurrent framework for solving time-dependent PDEs without generating large scale data sets. We provide a new perspective, that is, a different type of architecture through exploring the possible connections between traditional numerical methods (such as finite difference schemes) and deep neural networks, particularly convolutional and fully-connected neural networks. Our proposed approach will show its effectiveness and efficiency in solving PDE models with an integral form, in particular, we test on one-way wave equations and system of conservation laws.
翻译:采用深层次的学习方法研究局部差异方程式的趋势正在形成。在本文件中,我们引入了一个深层次的重复式框架,用于在不产生大规模数据集的情况下解决基于时间的PDE,我们提供了一种新的观点,即通过探索传统数字方法(如有限差异计划)和深层神经网络(特别是进化和完全连接的神经网络)之间的可能联系,提供了一种不同的结构。我们提出的方法将展示其以整体形式解决PDE模型的有效性和效率,特别是,我们测试单向波方程式和保存法体系。