We address the problem of approximating the moments of the solution, $\boldsymbol{X}(t)$, of an It\^o stochastic differential equation (SDE) with drift and a diffusion terms over a time-grid $t_0, t_1, \ldots, t_n$. In particular, we assume an explicit numerical scheme for the generation of sample paths $\hat{\boldsymbol{X}}(t_0), \ldots, \hat{\boldsymbol{X}}(t_n), \ldots$ and then obtain recursive equations that yield any desired non-central moment of $\hat{\boldsymbol{X}}(t_n)$ as a function of the initial condition $\boldsymbol{X}_0$. The core of the methodology is the decomposition of the numerical solution into a "central part" and an "effective noise" term. The central term is computed deterministically from the ordinary differential equation (ODE) that results from eliminating the diffusion term in the SDE, while the effective noise accounts for the stochastic deviation from the numerical solution of the ODE. For simplicity, we describe algorithms based on an Euler-Maruyama integrator, but other explicit numerical schemes can be exploited in the same way. We also apply the moment approximations to construct estimates of the 1-dimensional marginal probability density functions of $\hat{\boldsymbol{X}}(t_n)$ based on a Gram-Charlier expansion. Both for the approximation of moments and 1-dimensional densities, we describe how to handle the cases in which the initial condition is fixed (i.e., $\boldsymbol{X}_0 = \boldsymbol{x}_0$ for some known $\boldsymbol{x_0}$) or random. In the latter case, we resort to polynomial chaos expansion (PCE) schemes to approximate the target moments. The methodology has been inspired by the PCE and differential algebra (DA) methods used for uncertainty propagation in astrodynamics problems. Hence, we illustrate its application for the quantification of uncertainty in a 2-dimensional Keplerian orbit perturbed by a Wiener noise process.


翻译:我们特别要解决以下问题: 以时间- grid $_ 0, t_ 1, 焊多特, t_美元, 特别是, 我们假设一个生成样本路径的清晰数字方案 $\ hat\ boldsymbol{X} (t_0, 焊多特,\hat\ boldsymol{X} (t), lidersymbol{x} (t), odsylsymbol=0), 以 It_ comml- commoditions( lider) or- lidal- lidental literal- discreditions (Order) dispilental- liver listal- listal- listal listal listal liformations) 。 这种方法的核心是数字解决方案在“ lider- lider- lider- lider- lader- lader- lader- lader- lader- lader- lader- lader- lader- lader- lader- lader- lader- lader-lader-lader- lader-mod-mod-mod-mod-mod-mod-mod- rod-mocal-mocal- Procis) 内, 内, 内, 内, 其核心方法的核心方法的核心方法的核心是同一方法的核心方法的核心是,, 其法是, 其法是其法- 其法- 其基础- 其法- 其法- 其法- 其法-直-代为-直-直-直-直-直-代为-代为-代为-代为-代为-代为-代为-代为-代为-代为-代为-代为-

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月7日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员