Pre-trained language models (PLM) have marked a huge leap in neural dialogue modeling. While PLMs are pre-trained on large-scale text corpora, they are usually fine-tuned on scarce dialogue data with specific domain knowledge and dialogue styles. However, tailoring the language models while fully utilizing prior knowledge in large pre-trained models remains a challenge. In this paper, we present a novel approach for pre-trained dialogue modeling that casts the dialogue generation problem as a prompt-learning task. Instead of fine-tuning on limited dialogue data, our approach, DialogPrompt, learns continuous prompt embeddings optimized for dialogue contexts, which appropriately elicit knowledge from the large pre-trained model. To encourage the model to better utilize the prompt embeddings, the prompt encoders are designed to be conditioned on the input dialogue context. Experiments on popular conversation datasets show that our approach significantly outperforms the fine-tuning baseline and the generic prompt-learning methods. Furthermore, human evaluations strongly support the superiority of DialogPrompt in regard to response generation quality.


翻译:预先培训的语言模型(PLM)在神经对话模型方面标志着巨大的飞跃。虽然PLM公司在大规模文本公司方面接受过预先培训,但通常会根据特定领域知识和对话风格对稀缺的对话数据进行微调。然而,在经过培训的大型模型中,在充分利用先前知识的同时,对语言模型进行裁剪,这仍然是一个挑战。在本文中,我们提出了一个将对话生成问题作为快速学习任务的预培训对话模型的新办法。我们的方法( DialogPrompt)不是对有限的对话数据进行微调,而是不断为对话环境进行优化的快速嵌入,从而适当地从经过培训的大型模型中获取知识。为了鼓励模型更好地利用快速嵌入,快速编码器的设计要以输入对话环境为条件。对大众对话数据集的实验表明,我们的方法大大超出了调整基线和通用的快速学习方法。此外,人类评估有力地支持 DialogPrompt在反应生成质量方面的优势。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
47+阅读 · 2021年4月24日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Arxiv
4+阅读 · 2019年9月26日
Neural Response Generation with Meta-Words
Arxiv
6+阅读 · 2019年6月14日
Arxiv
4+阅读 · 2018年5月10日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员