Nowadays, multi-sensor technologies are applied in many fields, e.g., Health Care (HC), Human Activity Recognition (HAR), and Industrial Control System (ICS). These sensors can generate a substantial amount of multivariate time-series data. Unsupervised anomaly detection on multi-sensor time-series data has been proven critical in machine learning researches. The key challenge is to discover generalized normal patterns by capturing spatial-temporal correlation in multi-sensor data. Beyond this challenge, the noisy data is often intertwined with the training data, which is likely to mislead the model by making it hard to distinguish between the normal, abnormal, and noisy data. Few of previous researches can jointly address these two challenges. In this paper, we propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M). We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD) to better distinguish between the noisy, normal, and abnormal data. Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bidirectional LSTM with Attention) to capture temporal dependence from time-series data. Finally, CAE-M jointly optimizes these two subnetworks. We empirically compare the proposed approach with several state-of-the-art anomaly detection methods on HAR and HC datasets. Experimental results demonstrate that our proposed model outperforms these existing methods.
翻译:目前,多传感器技术应用于许多领域,例如保健(HC)、人类活动识别(HAR)和工业控制系统(ICS)。这些传感器可以产生大量多变时间序列数据。在多传感器时间序列数据中,未经监督的异常探测在机器学习研究中被证明至关重要。关键的挑战是如何通过在多传感器数据中捕捉空间时空关系来发现普通模式。除了这个挑战外,噪音数据往往与培训数据交织在一起,这有可能通过难以区分正常、异常和噪音数据来误导模型。在以往的研究中,很少有人能够联合应对这两个挑战。在本文件中,我们提议了一种全新的基于学习的异常探测算法,称为深演进自动内存网络(CAE-M)。我们首先建立一个深变动自动解调器,以描述多传感器数据的空间依赖性特征,以最均匀的调(MMMD)方法更好地区分了正常、异常和异常的数据。然后,我们用双轨的AIS-BA-A-S-S-A-C-C-C-C-C-C-C-C-C-C-AD-C-C-C-C-IL-IL-I-IAR-I-I-IAR-I-I-I-IAL-IAL-IL-IL-I-I-I-I-I-I-A-A-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I