Manipulating the light source of given images is an interesting task and useful in various applications, including photography and cinematography. Existing methods usually require additional information like the geometric structure of the scene, which may not be available for most images. In this paper, we formulate the single image relighting task and propose a novel Deep Relighting Network (DRN) with three parts: 1) scene reconversion, which aims to reveal the primary scene structure through a deep auto-encoder network, 2) shadow prior estimation, to predict light effect from the new light direction through adversarial learning, and 3) re-renderer, to combine the primary structure with the reconstructed shadow view to form the required estimation under the target light source. Experimental results show that the proposed method outperforms other possible methods, both qualitatively and quantitatively. Specifically, the proposed DRN has achieved the best PSNR in the "AIM2020 - Any to one relighting challenge" of the 2020 ECCV conference.
翻译:操纵特定图像的光源是一项有趣的任务,在包括摄影和电影摄影在内的各种应用中都是有用的。现有的方法通常需要额外的信息,例如现场的几何结构,而大多数图像可能都无法获得这些信息。在本文件中,我们制定了单一的图像点亮任务,并提出了一个新的深光网络(DRN),其中包括三个部分:(1) 现场重新转换,目的是通过深层自动编码网络揭示主要场景结构;(2) 预估,通过对抗性学习预测新光方向的光效应;(3) 重新生成,将主结构与重建的阴影视图结合起来,形成目标光源下所需的估计。实验结果显示,拟议的方法在质量和数量上优于其他可能的方法。具体地说,拟议的DRN在2020 ECCV 会议上实现了最佳的PSNR,“AIM2020-任何对一个亮亮的挑战”。