The heterogeneous nature of the logical foundations used in different interactive proof assistant libraries has rendered discovery of similar mathematical concepts among them difficult. In this paper, we compare a previously proposed algorithm for matching concepts across libraries with our unsupervised embedding approach that can help us retrieve similar concepts. Our approach is based on the fasttext implementation of Word2Vec, on top of which a tree traversal module is added to adapt its algorithm to the representation format of our data export pipeline. We compare the explainability, customizability, and online-servability of the approaches and argue that the neural embedding approach has more potential to be integrated into an interactive proof assistant.
翻译:不同互动证明助理图书馆所使用的逻辑基础的多样化性质使得很难发现其中相似的数学概念。 在本文中,我们比较了先前提出的一种算法,将各图书馆的概念与我们无人监督的嵌入方法相匹配,这样可以帮助我们检索类似的概念。我们的方法基于Word2Vec 的快速文本执行,此外,还添加了树木穿行模块,使其算法适应数据输出管道的表述格式。我们比较了这些方法的解释性、自定义性和在线可操作性,并论证神经嵌入方法更有可能融入互动的验证助理。