The current generation of deep neural networks has achieved close-to-human results on "closed-set" image recognition; that is, the classes being evaluated overlap with the training classes. Many recent methods attempt to address the importance of the unknown, which are termed "open-set" recognition algorithms, try to reject unknown classes as well as maintain high recognition accuracy on known classes. However, it is still unclear how different general domain-trained open-set methods from ImageNet would perform on a different but more specific domain, such as the medical domain. Without principled and formal evaluations to measure the effectiveness of those general open-set methods, artificial intelligence (AI)-based medical diagnostics would experience ineffective adoption and increased risks of bad decision making. In this paper, we conduct rigorous evaluations amongst state-of-the-art open-set methods, exploring different open-set scenarios from "similar-domain" to "different-domain" scenarios and comparing them on various general and medical domain datasets. We summarise the results and core ideas and explain how the models react to various degrees of openness and different distributions of open classes. We show the main difference between general domain-trained and medical domain-trained open-set models with our quantitative and qualitative analysis of the results. We also identify aspects of model robustness in real clinical workflow usage according to confidence calibration and the inference efficiency.


翻译:目前这一代深层神经网络在“封闭式”图像识别方面实现了接近人类的结果;也就是说,正在评估的课程与培训课程重叠。许多最近的方法试图解决未知(称为“开放式”识别算法)的重要性,试图拒绝未知的类,并保持已知类的高度识别准确性。然而,目前尚不清楚的是,图像网中不同的一般域训练的开放型方法在医疗领域等不同但更为具体的领域将如何运行。如果不进行有原则和正式的评价,以衡量这些一般开放型方法的有效性,人工智能(AI)的医学诊断将遭遇无效的采用和不良决策风险的增加。在本文件中,我们对最先进的开放型方法进行严格的评估,探索从“相似”到“不同”情景的不同开放型情景,并在各种一般和医疗领域数据集中进行比较。我们总结了结果和核心想法,并解释了模型如何对开放型课程的不同程度和不同分布做出反应。我们在一般领域和临床分析中,也展示了我们所了解的开放性领域和定量分析结果的准确性。我们从一般领域和定量分析中找出了我们所了解的准确性方向。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
8+阅读 · 2020年10月7日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员