The Heavy Ball Method, proposed by Polyak over five decades ago, is a first-order method for optimizing continuous functions. While its stochastic counterpart has proven extremely popular in training deep networks, there are almost no known functions where deterministic Heavy Ball is provably faster than the simple and classical gradient descent algorithm in non-convex optimization. The success of Heavy Ball has thus far eluded theoretical understanding. Our goal is to address this gap, and in the present work we identify two non-convex problems where we provably show that the Heavy Ball momentum helps the iterate to enter a benign region that contains a global optimal point faster. We show that Heavy Ball exhibits simple dynamics that clearly reveal the benefit of using a larger value of momentum parameter for the problems. The first of these optimization problems is the phase retrieval problem, which has useful applications in physical science. The second of these optimization problems is the cubic-regularized minimization, a critical subroutine required by Nesterov-Polyak cubic-regularized method to find second-order stationary points in general smooth non-convex problems.
翻译:由Polyak 五十多年前提出的重球法是优化连续功能的第一阶方法。 虽然在深层网络的培训中,其随机应变的对应方已证明非常受欢迎, 但几乎没有任何已知的功能, 其确定性重球比非凝固器优化中的简单和经典梯度下限算法更快。 重球的成功至今尚未在理论上获得理解。 我们的目标是解决这一差距, 在目前的工作中, 我们发现两个非调和性的问题, 在那里, 我们可以看到重球的动力有助于它进入一个包含全球最佳点的良性区域。 我们显示, 重球展示了简单的动态, 清楚地揭示了使用更大的动力参数来解决问题的好处。 这些优化问题中的第一个是阶段的检索问题, 它在物理科学中具有有益的应用。 这些优化问题的第二点是三次固定式最小化的最小化, 这是Nesterov- Polyak 立正态的立正式方法所需要的一种关键的次路径, 以便找到一般平稳的非凝固问题中的第二阶定点。