Fake news can have a significant negative impact on society because of the growing use of mobile devices and the worldwide increase in Internet access. It is therefore essential to develop a simple mathematical model to understand the online dissemination of fake news. In this study, we propose a point process model of the spread of fake news on Twitter. The proposed model describes the spread of a fake news item as a two-stage process: initially, fake news spreads as a piece of ordinary news; then, when most users start recognizing the falsity of the news item, that itself spreads as another news story. We validate this model using two datasets of fake news items spread on Twitter. We show that the proposed model is superior to the current state-of-the-art methods in accurately predicting the evolution of the spread of a fake news item. Moreover, a text analysis suggests that our model appropriately infers the correction time, i.e., the moment when Twitter users start realizing the falsity of the news item. The proposed model contributes to understanding the dynamics of the spread of fake news on social media. Its ability to extract a compact representation of the spreading pattern could be useful in the detection and mitigation of fake news.
翻译:假消息可能会对社会产生重大的负面影响,因为移动设备的使用越来越多,而互联网上网量也在增加。 因此,必须开发一个简单的数学模型来理解假新闻的在线传播。 我们在这个研究中提出了一个在推特上传播假新闻的点点进程模型。 提议的模型将假新闻项目的扩散描述为一个两阶段的过程: 最初, 假新闻传播是普通新闻的一部分; 然后, 当大多数用户开始认识到新闻项目是虚假的, 而它本身又传播成另一个新闻故事。 我们用在推特上传播的假新闻项目的两个数据集来验证这个模型。 我们显示,提议的模型优于目前准确预测假新闻项目传播情况的最新方法。 此外, 文本分析表明,我们的模型适当地推断了更正时间, 也就是, 当推特用户开始认识到新闻项目是虚假的时, 拟议的模型有助于理解在社交媒体上传播假新闻的动态。 它能够提取传播模式的缩影缩缩图在检测和减少假新闻方面可能是有用的。