K\"orner introduced the notion of graph entropy in 1973 as the minimal code rate of a natural coding problem where not all pairs of letters can be distinguished in the alphabet. Later it turned out that it can be expressed as the solution of a minimization problem over the so-called vertex-packing polytope. In this paper we generalize this notion to graphons. We show that the analogous minimization problem provides an upper bound for graphon entropy. We also give a lower bound in the shape of a maximization problem. The main result of the paper is that for most graphons these two bounds actually coincide and hence precisely determine the entropy in question. Furthermore, graphon entropy has a nice connection to the fractional chromatic number and the fractional clique number (defined for graphons by Hladk\'y and Rocha).
翻译:K\ “ orner ” 于1973年引入了图解 entropy 概念, 认为它是自然编码问题的最低编码率, 而在字母中并非所有的字母都可区分。 后来发现它可以被表现为在所谓的顶端包装聚点上最小化问题的解决方案。 在本文中, 我们将这个概念概括为图形。 我们显示相似的最小化问题为图解 entropy 提供了上界。 我们还给出了一个更低的线条, 其形状是最大化问题。 纸张的主要结果是, 对于大多数的图解来说, 这两条线实际上吻合, 从而精确地决定了所涉及的酶 。 此外, 石墨 entropy 与分数和分数( Hladk\'y 和 Rocha 所定义的图形) 有着良好的联系 。