We develop a family of distributed center-based clustering algorithms that work over networks of users. In the proposed scenario, users contain a local dataset and communicate only with their immediate neighbours, with the aim of finding a clustering of the full, joint data. The proposed family, termed Distributed Gradient Clustering (DGC-$\mathcal{F}_\rho$), is parametrized by $\rho \geq 1$, controling the proximity of users' center estimates, with $\mathcal{F}$ determining the clustering loss. Our framework allows for a broad class of smooth convex loss functions, including popular clustering losses like $K$-means and Huber loss. Specialized to popular clustering losses like $K$-means and Huber loss, DGC-$\mathcal{F}_\rho$ gives rise to novel distributed clustering algorithms DGC-KM$_\rho$ and DGC-HL$_\rho$, while novel clustering losses based on Logistic and Fair functions lead to DGC-LL$_\rho$ and DGC-FL$_\rho$. We provide a unified analysis and establish several strong results, under mild assumptions. First, we show that the sequence of centers generated by the methods converges to a well-defined notion of fixed point, under any center initialization and value of $\rho$. Second, we prove that, as $\rho$ increases, the family of fixed points produced by DGC-$\mathcal{F}_\rho$ converges to a notion of consensus fixed points. We show that consensus fixed points of DGC-$\mathcal{F}_{\rho}$ are equivalent to fixed points of gradient clustering over the full data, guaranteeing a clustering of the full data is produced. For the special case of Bregman losses, we show that our fixed points converge to the set of Lloyd points. Extensive numerical experiments on synthetic and real data confirm our theoretical findings, show strong performance of our methods and demonstrate the usefulness and wide range of potential applications of our general framework, such as outlier detection.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员