Researchers use recall to evaluate rankings across a variety of retrieval, recommendation, and machine learning tasks. While there is a colloquial interpretation of recall in set-based evaluation, the research community is far from a principled understanding of recall metrics for rankings. The lack of principled understanding of or motivation for recall has resulted in criticism amongst the retrieval community that recall is useful as a measure at all. In this light, we reflect on the measurement of recall in rankings from a formal perspective. Our analysis is composed of three tenets: recall, robustness, and lexicographic evaluation. First, we formally define `recall-orientation' as sensitivity to movement of the bottom-ranked relevant item. Second, we analyze our concept of recall orientation from the perspective of robustness with respect to possible searchers and content providers. Finally, we extend this conceptual and theoretical treatment of recall by developing a practical preference-based evaluation method based on lexicographic comparison. Through extensive empirical analysis across 17 TREC tracks, we establish that our new evaluation method, lexirecall, is correlated with existing recall metrics and exhibits substantially higher discriminative power and stability in the presence of missing labels. Our conceptual, theoretical, and empirical analysis substantially deepens our understanding of recall and motivates its adoption through connections to robustness and fairness.


翻译:研究人员利用回顾来评估各种检索、建议和机算学习任务中的排名。虽然在基于定置的评价中对重新召回作了学术解释,但研究界远未对重新召回的排名指标有原则性的理解。缺乏原则性的理解或重新召回的动机,导致检索界对重新召回的批评,而重新召回是一个有用的措施。从这一点出发,我们思考从正式角度衡量重新召回的排名的方法。我们的分析由三项原则组成:回顾、稳健和词汇学评估。首先,我们正式将“重新召回方向”定义为对排名底的相关项目移动的敏感性。第二,我们从对可能的搜索者和内容提供者的稳健性角度分析我们的重新召回方向概念。最后,我们扩展了这种概念和理论上的处理方法,根据地谱比较制定了一种基于实际偏好的评价方法。我们通过对17个TREC轨道进行广泛的实证分析,确定我们的新评价方法(Lexirecallcall)与现有的重新召回回调的衡量方法和证据性强得多的判断力和稳定性和稳定性与缺乏的正确性联系,我们从理论上、理论、理论和深刻地理解和深刻的印象和深刻的印象分析。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
12+阅读 · 2020年6月20日
Arxiv
38+阅读 · 2020年3月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员