Large Language Models (LLMs) have shown remarkable abilities recently, including passing advanced professional exams and demanding benchmark tests. This performance has led many to suggest that they are close to achieving humanlike or 'true' understanding of language, and even Artificial General Intelligence (AGI). Here, we provide a new open-source benchmark that can assess semantic abilities of LLMs using two-word phrases using a task that can be performed relatively easily by humans without advanced training. Combining multiple words into a single concept is a fundamental aspect of human language and intelligence. The test requires meaningfulness judgments of 1768 noun-noun combinations that have been rated as meaningful (e.g., baby boy) or not meaningful (e.g., goat sky). by 150 human raters. We provide versions of the task that probe meaningfulness ratings on a 0-4 scale as well as binary judgments. We conducted a series of experiments using the TWT on GPT-4, GPT-3.5, and Bard, with both versions. Results demonstrated that, compared to humans, all models perform poorly at rating meaningfulness of these phrases. GPT-3.5 and Bard are also unable to make binary discriminations between sensible and nonsense phrases as making sense. GPT-4 makes a substantial improvement in binary discrimination of combinatorial phrases but is still significantly worse than human performance. The TWT can be used to understand the limitations and weaknesses of current LLMs, and potentially improve them. The test also reminds us that caution is warranted in attributing 'true understanding' or AGI to LLMs. TWT is available at: https://github.com/NickRiccardi/two-word-test


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
25+阅读 · 2023年6月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员