State redistribution is an algorithm that stabilizes cut cells for embedded boundary grid methods. This work extends the earlier algorithm in several important ways. First, state redistribution is extended to three spatial dimensions. Second, we discuss several algorithmic changes and improvements motivated by the more complicated cut cell geometries that can occur in higher dimensions. In particular, we introduce a weighted version with less dissipation in an easily generalizable framework. Third, we demonstrate that state redistribution can also stabilize a solution update that includes both advective and diffusive contributions. The stabilization algorithm is shown to be effective for incompressible as well as compressible reacting flows. Finally, we discuss the implementation of the algorithm for several exascale-ready simulation codes based on AMReX, demonstrating ease of use in combination with domain decomposition, hybrid parallelism and complex physics.
翻译:国家再分配是一种稳定内嵌边界网格方法的剪切单元格的算法。 这项工作以若干重要方式扩展了早期的算法。 首先, 国家再分配扩大到三个空间层面。 第二, 我们讨论数种算法变化和改进, 其动机是更复杂的剪切细胞地貌可能发生在更高层面。 特别是, 我们引入了一个加权版本, 其分解程度不那么高, 在一个容易普及的框架内。 第三, 我们证明国家再分配还可以稳定一个包括活性贡献和模糊贡献的解决方案更新。 稳定算法已证明对不可压缩和可压缩反应流有效。 最后, 我们讨论在AMREX的基础上实施几种快速易用的模拟代码, 表明在区域分解、 混合平行主义 和复杂物理学的结合下, 使用起来容易。