In this article we construct a compact Riemannian manifold of high dimension on which the time dependent Euler equations are Turing complete. More precisely, the halting of any Turing machine with a given input is equivalent to a certain global solution of the Euler equations entering a certain open set in the space of divergence-free vector fields. In particular, this implies the undecidability of whether a solution to the Euler equations with an initial datum will reach a certain open set or not in the space of divergence-free fields. This result goes one step further in Tao's programme to study the blow-up problem for the Euler and Navier-Stokes equations using fluid computers. As a remarkable spin-off, our method of proof allows us to give a counterexample to a conjecture of Moore dating back to 1998 on the non-existence of analytic maps on compact manifolds that are Turing complete.
翻译:在本文中,我们构建了一个高维的紧凑里伊曼式方程式, 时间依赖的欧拉方程式正在图灵完成。 更确切地说, 停止任何具有特定输入的图灵机,相当于欧拉方程式进入一个开放的矢量场空间的某种全球解决方案。 特别是,这意味着对具有初始数据方程式的欧拉方程式的解决方案能否达到一个开放的套件, 是否在无差异域空间中实现, 不可减损。 这个结果更进一步地出现在道的方案中, 用于研究使用流体计算机的欧拉和纳维埃- 斯托克斯方程式的爆炸问题。 作为一个引人注目的副作用, 我们的证据方法使我们能够对摩尔早在1998年就在图灵完成的柱形上不存在解析图示图的图象进行反推。