In this note, we discuss the ellipticity of the single layer boundary integral operator for the wave equation in one space dimension. This result not only generalizes the well-known ellipticity of the energetic boundary integral formulation in $L^2$, but it also turns out to be a particular case of a recent result on the inf-sup stability of boundary integral operators for the wave equation. Instead of the time derivative in the energetic formulation, we use a modified Hilbert transformation, which allows us to stay in Sobolev spaces of the same order. This results in the applicability of standard boundary element error estimates, which are confirmed by numerical results.
翻译:在本说明中,我们讨论了单层边界整体操作器在一个空间层面对波形方程式的省略性。这一结果不仅概括了以2美元为单位的高强度边界整体配方的众所周知的省略性,而且证明是最近对波形组合操作器的不稳定性造成的结果的一个特例。我们使用了经修改的希尔伯特转换,让我们可以留在同一顺序的索博列夫空间。这导致标准边界要素误差估计的适用性,而这种估计得到数字结果的证实。