Assume that a graph $G$ models a detection system for a facility with a possible "intruder," or a multiprocessor network with a possible malfunctioning processor. We consider the problem of placing (the minimum number of) detectors at a subset of vertices in $G$ to automatically determine if there is an intruder, and if so, its precise location. In this research we explore a fault-tolerant variant of identifying codes, known as error-correcting identifying codes, which permit one false positive or negative and are applicable to real-world systems. We present the proof of NP-completeness of the problem of determining said minimum size in arbitrary graphs, and determine bounds on the parameter in cubic graphs.
翻译:假设图形$G$为可能“ 入侵者” 的设施或可能存在故障处理器的多处理器网络的探测系统建模。 我们考虑将探测器(最低数目)放置在一个脊椎子子($G$)的问题,以便自动确定是否有入侵者,如果有入侵者,则其确切位置。 在这项研究中,我们探索了识别代码的错误容忍变量,称为错误更正识别代码,允许一种假的正或负的代码,并适用于现实世界系统。我们提出了在任意图表中确定所述最小大小的NP问题是否完整的证据,并在立方图中确定参数的界限。