Non-line-of-sight (NLOS) tracking has drawn increasing attention in recent years, due to its ability to detect object motion out of sight. Most previous works on NLOS tracking rely on active illumination, e.g., laser, and suffer from high cost and elaborate experimental conditions. Besides, these techniques are still far from practical application due to oversimplified settings. In contrast, we propose a purely passive method to track a person walking in an invisible room by only observing a relay wall, which is more in line with real application scenarios, e.g., security. To excavate imperceptible changes in videos of the relay wall, we introduce difference frames as an essential carrier of temporal-local motion messages. In addition, we propose PAC-Net, which consists of alternating propagation and calibration, making it capable of leveraging both dynamic and static messages on a frame-level granularity. To evaluate the proposed method, we build and publish the first dynamic passive NLOS tracking dataset, NLOS-Track, which fills the vacuum of realistic NLOS datasets. NLOS-Track contains thousands of NLOS video clips and corresponding trajectories. Both real-shot and synthetic data are included. Our codes and dataset are available at https://againstentropy.github.io/NLOS-Track/.
翻译:非直视(NLOS)追踪近年来受到了越来越多的关注,因为它可以检测视线之外的物体运动。以前的大多数NLOS追踪工作都依赖于主动照明,比如激光,而且成本高昂,实验条件复杂。此外,由于过于简化的设置,这些技术仍远未达到实际应用的水平。相比之下,我们提出了一种纯被动方法来跟踪一个走在一个不可见房间里的人,只观察中继墙即可,这更符合实际的应用场景,比如安全。为了挖掘中继墙视频中微不可见的变化,我们引入了差分帧作为时间局部动态信息的重要载体。此外,我们提出了PAC-Net,它由交替的传播和校准组成,使其能够在帧级粒度上利用动态和静态信息。为了评估所提出的方法,我们构建并发布了第一个动态被动NLOS跟踪数据集NLOS-Track,填补了现实NLOS数据集的空白。NLOS-Track包含数千个NLOS视频剪辑和相应的轨迹。包括真实数据和合成数据。我们的代码和数据集可在 https://againstentropy.github.io/NLOS-Track/ 上获取。