Public verification of quantum money has been one of the central objects in quantum cryptography ever since Wiesner's pioneering idea of using quantum mechanics to construct banknotes against counterfeiting. So far, we do not know any publicly-verifiable quantum money scheme that is provably secure from standard assumptions. In this work, we provide both negative and positive results for publicly verifiable quantum money. **In the first part, we give a general theorem, showing that a certain natural class of quantum money schemes from lattices cannot be secure. We use this theorem to break the recent quantum money scheme of Khesin, Lu, and Shor. **In the second part, we propose a framework for building quantum money and quantum lightning we call invariant money which abstracts some of the ideas of quantum money from knots by Farhi et al.(ITCS'12). In addition to formalizing this framework, we provide concrete hard computational problems loosely inspired by classical knowledge-of-exponent assumptions, whose hardness would imply the security of quantum lightning, a strengthening of quantum money where not even the bank can duplicate banknotes. **We discuss potential instantiations of our framework, including an oracle construction using cryptographic group actions and instantiations from rerandomizable functional encryption, isogenies over elliptic curves, and knots.
翻译:** 在这项工作中,我们为可公开核查的量子货币提供了消极和积极的结果。** 在第一部分,我们给出了一个总体理论,表明来自悬赏物的某种自然量子货币计划不可能安全。我们用这个理论打破了最近Keesin、Lu和Shor的量子货币计划。 **在第二部分,我们提出了一个建设量子货币和量子闪电的框架,我们呼吁的金额和量子闪电能够从标准假设中找到可被证实的安全。在这项工作中,我们为可公开核查的量子货币提供了消极和积极的结果。** 在将这一框架正规化的同时,我们还提供了一种具体的硬计算问题,这些问题来自典型的知识――稀释物假设,其硬性将意味着量子闪电的安全,一个加强量子货币的计划,在那里甚至银行的量子货币也无法重复银行的货币和量子闪电。** 我们讨论的是,从法希等人(ITS'12)的结结中摘取的量货币的一些想法, 包括一个可变式的可变式的货币框架, 以及一个可变的翻版的翻版的刻式的模型。