Moving Target Defense (MTD) has emerged as a key technique in various security applications as it takes away the attacker's ability to perform reconnaissance for exploiting a system's vulnerabilities. However, most of the existing research in the field assumes unrealistic access to information about the attacker's motivations and/or actions when developing MTD strategies. Many of the existing approaches also assume complete knowledge regarding the vulnerabilities of a system and how each of these vulnerabilities can be exploited by an attacker. In this work, we aim to create algorithms that generate effective Moving Target Defense strategies that do not rely on prior knowledge about the attackers. Our work assumes that the only way the defender receives information about its own reward is via interaction with the attacker in a repeated game setting. Depending on the amount of information that can be obtained from the interactions, we devise two different algorithms using multi-armed bandit formulation to identify efficient strategies. We then evaluate our algorithms using data mined from the National Vulnerability Database to showcase that they match the performance of the state-of-the-art techniques, despite using a lot less amount of information.
翻译:在各种安全应用中,移动目标防御(MTD)已成为关键技术,因为它使攻击者丧失了为利用系统弱点进行侦察的能力。然而,实地现有的大多数研究假设在制定MTD战略时,不切实际地获取攻击者的动机和/或行动的信息。许多现有方法还假定完全了解系统的脆弱性,以及攻击者如何利用这些弱点中的每一个。在这项工作中,我们的目标是创建算法,产生有效的移动目标防御战略,而这种战略并不依赖于以前对攻击者的了解。我们的工作假设,捍卫者获得关于其本身奖赏的信息的唯一方式是在反复的游戏环境中与攻击者互动。根据从这些互动中可以得到的信息数量,我们设计了两种不同的算法,使用多臂的波段来确定有效的战略。然后我们用从国家脆弱性数据库中提取的数据来评估我们的算法,以显示它们符合最新技术的性能,尽管使用的信息少得多。