In this paper, we consider the problem of noiseless non-adaptive probabilistic group testing, in which the goal is high-probability recovery of the defective set. We show that any non-adaptive group testing strategy requires $\Omega( \min\{k \log n, n\} )$ tests in the case of $n$ items among which $k$ are defective, thus matching the $O( \min\{k \log n, n\} )$ upper bound obtained by taking the better of random testing and individual testing. This strengthens previous converse results that are only tight/valid in the regimes $k \le n^{1-\Omega(1)}$ and/or $k = \Theta(n)$. When specialized to the regime $k = \omega\big( \frac{n}{ \log n } \big)$ (including the linear regime $k = \Theta(n)$), we additionally prove the stronger statement that individual testing is asymptotically optimal for any non-zero target success probability, thus strengthening an existing result of Aldridge (2019) in terms of both the error probability and the assumed scaling of $k$.
翻译:在本文中,我们考虑的是无噪音的非适应性概率组测试问题,其目标在于高概率回收有缺陷的一组。我们表明,任何非适应性组测试战略都需要美元(Omega) (\min ⁇ k\log n, n ⁇ ) 和/或美元=\theta(n) $) 的测试。当专门用于该体系的项目时,美元=\ omgabig (\ frac{n\\ log n}\ big) 美元(包括线性制度 $k =\ Theta(n) 美元),我们进一步证明了更强烈的说法,即个体测试在制度下只有紧/有效($k\le n ⁇ 1\\\\\\\\\\\\\\\\ omega(1)}美元和/或美元=\ Theta(n)美元)。当专门用于该体系的项目($k= \ omgabig) 美元(包括线性制度 $k =\ Theta(n) $) 得到更好的随机测试。我们进一步证明, 个人测试的概率是目前最有可能(20) 和最有可能(假设的18) 任何不成功目标。