The Satisfiability Modulo Theories (SMT) issue concerns the satisfiability of formulae from multiple background theories, usually expressed in the language of first-order predicate logic with equality. SMT solvers are often based on variants of the Nelson-Oppen combination method, a solver for the quantifier-free fragment of the combination of theories with disjoint signatures, via cooperation among their decision procedures. When each of the theories to be combined by the Nelson-Oppen method is convex (that is, any conjunction of its literals can imply a disjunction of equalities only when it implies at least one of the equalities) and decidable in polynomial time, the running time of the combination procedure is guaranteed to be polynomial in the size of the input formula. In this paper, we prove the convexity of a fragment of Zermelo-Fraenkel set theory, called Multi-Level Syllogistic, most of whose polynomially decidable fragments we have recently characterized.


翻译:满足性莫杜洛理论(SMT)问题涉及多种背景理论的公式的可比较性,通常以第一阶上游逻辑平等的语言表达。SMT解答器通常以Nelson-Oppen混合法的变体为基础,后者是理论与脱节性签名结合的量化零碎的解析器,通过它们的决策程序相互合作。当由Nelson-Oppen方法结合的每一种理论都是共性时(即其文字的任何组合都意味着平等性分离,只有当它意味着至少一种等值)和在多元时间可分化时,组合程序的运行时间保证在输入公式的大小上是多元的。在本文中,我们证明了Zermelo-Fraenkel定型理论(称为多级共性共性理论)的共性和共性,其中多数是我们最近确定过的多级共性碎片。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
0+阅读 · 2021年11月6日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关主题
相关资讯
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员