Kronecker regression is a highly-structured least squares problem $\min_{\mathbf{x}} \lVert \mathbf{K}\mathbf{x} - \mathbf{b} \rVert_{2}^2$, where the design matrix $\mathbf{K} = \mathbf{A}^{(1)} \otimes \cdots \otimes \mathbf{A}^{(N)}$ is a Kronecker product of factor matrices. This regression problem arises in each step of the widely-used alternating least squares (ALS) algorithm for computing the Tucker decomposition of a tensor. We present the first subquadratic-time algorithm for solving Kronecker regression to a $(1+\varepsilon)$-approximation that avoids the exponential term $O(\varepsilon^{-N})$ in the running time. Our techniques combine leverage score sampling and iterative methods. By extending our approach to block-design matrices where one block is a Kronecker product, we also achieve subquadratic-time algorithms for (1) Kronecker ridge regression and (2) updating the factor matrix of a Tucker decomposition in ALS, which is not a pure Kronecker regression problem, thereby improving the running time of all steps of Tucker ALS. We demonstrate the speed and accuracy of this Kronecker regression algorithm on synthetic data and real-world image tensors.
翻译:Kronecker 回归是一个高度结构化的最小方块问题 $\ min\ mathbf{x\\ \ laVert\ mathbf{K\ mathbf{K\ x} -\ mathb{b}\\ \ \ k} Kronecker = mathbf{ K} =\ mathbf{ A\ (1)}\ oddos = otimes = loreckers\ mathbf{A\ (N)}$ 是要素矩阵的Kronecker 精确度产物产。 这个回归问题出现在广泛使用的交替最小方(ALS) 计算塔克变形的算法中的每一个步骤中 。 我们提出第一个用于解析克朗克方块回归的次算法 = $( 1\ varepslon) = $O (\ varepslationral_- N} $。 我们的技术结合了杠杆取样的取样和反复化方法, Kreckeralalal 将Krickal 的计算器的计算和 Krational 的缩缩缩缩化数据推展到 Kral 。