Offline reinforcement learning, by learning from a fixed dataset, makes it possible to learn agent behaviors without interacting with the environment. However, depending on the quality of the offline dataset, such pre-trained agents may have limited performance and would further need to be fine-tuned online by interacting with the environment. During online fine-tuning, the performance of the pre-trained agent may collapse quickly due to the sudden distribution shift from offline to online data. While constraints enforced by offline RL methods such as a behaviour cloning loss prevent this to an extent, these constraints also significantly slow down online fine-tuning by forcing the agent to stay close to the behavior policy. We propose to adaptively weigh the behavior cloning loss during online fine-tuning based on the agent's performance and training stability. Moreover, we use a randomized ensemble of Q functions to further increase the sample efficiency of online fine-tuning by performing a large number of learning updates. Experiments show that the proposed method yields state-of-the-art offline-to-online reinforcement learning performance on the popular D4RL benchmark. Code is available: \url{https://github.com/zhaoyi11/adaptive_bc}.


翻译:离线强化学习,通过学习固定数据集,可以学习代理行为而不与环境互动。然而,根据离线数据集的质量,这种经过培训的代理物的性能可能有限,还需要通过与环境互动进行在线微调。在在线微调期间,由于从离线数据向在线数据的突然分配,培训前代理物的性能可能迅速崩溃。行为克隆损失等离线RL方法造成的限制在一定程度上防止了这一点,但这些限制也大大减缓了在线微调,迫使代理物接近行为政策。我们提议在根据代理物的性能和培训稳定性进行在线微调时,对行为克隆损失进行适应性加权。此外,我们使用随机化的Q函数组合,通过大量学习更新,进一步提高在线微调的抽样效率。实验显示,拟议的方法在流行的D4RL基准上产生最新的离线至线强化学习表现。代码:\urpive_the-art-offline-on-o-on-e-e-e-een struction struction press production production production production asyal.

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月9日
Arxiv
13+阅读 · 2021年7月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员