Using ideas from Generalized Degrees of Freedom (GDoF) analyses and extremal network theory, this work studies the extremal gain of optimal power control over binary power control, especially in large interference networks, in search of new theoretical insights. Whereas numerical studies have established that in most practical settings binary power control is close to optimal, the extremal analysis shows not only there exist settings where the gain from optimal power control can be quite significant, but also bounds the extremal values of such gains from a GDoF perspective. As its main contribution, we explicitly characterizes the extremal GDoF gain of optimal over binary power control as $\Theta(\sqrt{K})$ for all $K$. In particular, the extremal gain is bounded between $\lfloor \sqrt{K}\rfloor$ and $2.5\sqrt{K}$ for every $K$. For $K=2,3,4,5,6$ users, the precise extremal gain is $1, 3/2, 2, 9/4$ and $41/16$, respectively. Networks shown to achieve the extremal gain may be interpreted as multi-tier heterogeneous networks. It is worthwhile to note that because of their focus on asymptotic analysis, the sharp characterizations of extremal gains are valuable primarily from a theoretical perspective, and not as contradictions to the conventional wisdom that binary power control is generally close to optimal in practical, non-asymptotic settings.
翻译:本文运用一般化自由度(GDoF)分析的理念和极端网络理论,研究二进制权力控制的最佳权力控制,特别是在大型干涉网络中,以寻找新的理论见解。虽然数字研究已经确定,在大多数实际环境中,二进制权力控制接近最佳,但极端分析不仅显示存在从最佳权力控制获得相当可观的收益的设置,而且从GDoF的角度将这种收益的极限值捆绑在一起。作为其主要贡献,我们明确将二进制权力控制最优获得的二进制GDoF,特别是在大型干涉网络中,以美元为单位。特别是,在多数实际情况下,二进制权力控制最优获得的收益在$\l drop drut{K ⁇ rt} 和 2.5\sqrt{K} 美元之间。对于2,3,4,4,515美元的用户,准确的外加值是1,3/2,2,9/4美元和41/16美元。 网络显示,所有美元的最优的二进制制权力控制,因为其最深层次的焦点一般是常规分析,从极值分析,其最接近于极值分析,其最值分析,其最值分析可得到的极值分析,其最值分析,其最值分析,其最值分析,其最值性分析,其最值分析,其最值性分析,其最值性分析,其价值的值性分析,其价值的焦点是从可得到。