Gradient-based Bi-Level Optimization (BLO) methods have been widely applied to solve modern machine learning problems. However, most existing solution strategies are theoretically designed based on restrictive assumptions (e.g., convexity of the lower-level sub-problem), and computationally not applicable for high-dimensional tasks. Moreover, there are almost no gradient-based methods that can efficiently handle BLO in those challenging scenarios, such as BLO with functional constraints and pessimistic BLO. In this work, by reformulating BLO into an approximated single-level problem based on the value-function, we provide a new method, named Bi-level Value-Function-based Sequential Minimization (BVFSM), to partially address the above issues. To be specific, BVFSM constructs a series of value-function-based approximations, and thus successfully avoids the repeated calculations of recurrent gradient and Hessian inverse required by existing approaches, which are time-consuming (especially for high-dimensional tasks). We also extend BVFSM to address BLO with additional upper- and lower-level functional constraints. More importantly, we demonstrate that the algorithmic framework of BVFSM can also be used for the challenging pessimistic BLO, which has never been properly solved by existing gradient-based methods. On the theoretical side, we strictly prove the convergence of BVFSM on these types of BLO, in which the restrictive lower-level convexity assumption is completely discarded. To our best knowledge, this is the first gradient-based algorithm that can solve different kinds of BLO problems (e.g., optimistic, pessimistic and with constraints) all with solid convergence guarantees. Extensive experiments verify our theoretical investigations and demonstrate the superiority of BVFSM on various real-world applications.


翻译:以梯度为基础的双级优化方法(BLO)被广泛用于解决现代机器学习问题,然而,大多数现有解决方案战略都是在理论上根据限制性假设(例如,低层次子问题的精度)设计的,在计算上不适用于高层次任务。此外,几乎没有基于梯度的方法能够在这些具有挑战性的情况中有效处理BLO,例如BLO具有功能限制和悲观的BLO。在这项工作中,将BLO改造成基于价值功能的近似单一层次问题,我们提供了一种新方法,名为双层次的基于价值的快速递减序列(BVFSM),以严格的方式解决上述问题。具体地说,BVFSM建立了一系列基于价值的近似,从而成功地避免了反复计算反复出现的梯度和基于赫斯的错误,这些方法是耗时的(特别是用于高层次的任务 ),我们还将BVFSM的方面面面面面面面面面,其基础是更精确的、更精确的BLOLO的稳定性调查也是我们目前最具有挑战性的。

0
下载
关闭预览

相关内容

专知会员服务
141+阅读 · 2021年3月17日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
8+阅读 · 2019年6月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2019年6月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员