Spiking neural networks (SNN) provide a new computational paradigm capable of highly parallelized, real-time processing. Photonic devices are ideal for the design of high-bandwidth, parallel architectures matching the SNN computational paradigm. Co-integration of CMOS and photonic elements allow low-loss photonic devices to be combined with analog electronics for greater flexibility of nonlinear computational elements. As such, we designed and simulated an optoelectronic spiking neuron circuit on a monolithic silicon photonics (SiPh) process that replicates useful spiking behaviors beyond the leaky integrate-and-fire (LIF). Additionally, we explored two learning algorithms with the potential for on-chip learning using Mach-Zehnder Interferometric (MZI) meshes as synaptic interconnects. A variation of Random Backpropagation (RPB) was experimentally demonstrated on-chip and matched the performance of a standard linear regression on a simple classification task. Meanwhile, the Contrastive Hebbian Learning (CHL) rule was applied to a simulated neural network composed of MZI meshes for a random input-output mapping task. The CHL-trained MZI network performed better than random guessing but does not match the performance of the ideal neural network (without the constraints imposed by the MZI meshes). Through these efforts, we demonstrate that co-integrated CMOS and SiPh technologies are well-suited to the design of scalable SNN computing architectures.
翻译:Spik 神经网络( SNNN) 提供了一种新的计算模式, 能够高度平行实时处理。 光学设备是设计高带宽、 匹配 SNN 计算模式的平行结构的理想。 CMOS 和光子元素的结合使得低损光学设备能够与模拟电子设备相结合, 使非线性计算元素具有更大的灵活性。 因此, 我们设计并模拟了在单板硅光子光子( SiPh) 进程中的光学透析神经电路。 光子设备复制了有用的喷射行为, 超越了泄漏整合和火灾( LIF ) 。 此外, 我们探索了两种具有利用 Mach- Zemand 干涉( MZI) 和光子元素的光学学习潜力的学习算法, 使非线性计算元素更加灵活。 随机性调整( RPBB) 的变式在芯片上进行了实验, 与简单分类任务的标准线性回归性回归( ) 。 同时, 对比性 Hebbian 学习( 精准的计算( CHL) 测试了Silal- tral- 网络的软化的软化计算结果, 规则是用来模拟MZ 的软化的软化的软化的软化的软化计算结果。