In recent years, deep learning-based automated personality trait detection has received a lot of attention, especially now, due to the massive digital footprints of an individual. Moreover, many researchers have demonstrated that there is a strong link between personality traits and emotions. In this paper, we build on the known correlation between personality traits and emotional behaviors, and propose a novel multitask learning framework, SoGMTL that simultaneously predicts both of them. We also empirically evaluate and discuss different information-sharing mechanisms between the two tasks. To ensure the high quality of the learning process, we adopt a MAML-like framework for model optimization. Our more computationally efficient CNN-based multitask model achieves the state-of-the-art performance across multiple famous personality and emotion datasets, even outperforming Language Model based models.


翻译:近些年来,深层次的学习自动化性能特征检测受到人们的极大关注,特别是现在,因为一个人的大规模数字足迹。此外,许多研究人员已经证明个性特征和情感之间有着密切的联系。在本文中,我们以已知的个性特征和情感行为之间的相互关系为基础,提出了一个新的多任务学习框架,SoGMTL同时对这两个任务进行预测。我们还从经验上评估和讨论两个任务之间的不同信息共享机制。为了确保学习过程的高质量,我们采用了类似于MAML的模型优化框架。我们基于CNN的计算效率更高的多任务模型可以实现跨多个著名个性格和情感数据集的最新性能,甚至超过语言模型的模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
51+阅读 · 2020年5月16日
专知会员服务
118+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
已删除
将门创投
3+阅读 · 2017年11月3日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
4+阅读 · 2018年11月6日
Arxiv
5+阅读 · 2018年9月11日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
51+阅读 · 2020年5月16日
专知会员服务
118+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
已删除
将门创投
3+阅读 · 2017年11月3日
相关论文
Arxiv
17+阅读 · 2021年2月15日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
4+阅读 · 2018年11月6日
Arxiv
5+阅读 · 2018年9月11日
Top
微信扫码咨询专知VIP会员