We consider the problem of maximizing submodular functions in single-pass streaming and secretaries-with-shortlists models, both with random arrival order. For cardinality constrained monotone functions, Agrawal, Shadravan, and Stein gave a single-pass $(1-1/e-\varepsilon)$-approximation algorithm using only linear memory, but their exponential dependence on $\varepsilon$ makes it impractical even for $\varepsilon=0.1$. We simplify both the algorithm and the analysis, obtaining an exponential improvement in the $\varepsilon$-dependence (in particular, $O(k/\varepsilon)$ memory). Extending these techniques, we also give a simple $(1/e-\varepsilon)$-approximation for non-monotone functions in $O(k/\varepsilon)$ memory. For the monotone case, we also give a corresponding unconditional hardness barrier of $1-1/e+\varepsilon$ for single-pass algorithms in randomly ordered streams, even assuming unlimited computation. Finally, we show that the algorithms are simple to implement and work well on real world datasets.


翻译:我们考虑在单流流中最大限度地增加子模块功能的问题,在单流中和秘书与分流中最大限度地增加子模块功能的问题,这两种模式都具有随机抵达顺序。对于受限制的单质功能,Agrawal、Shadravan和Stein提供了单流(1-1/e-varepsilon)$-ogymogymation 算法,仅使用线性内存,但是它们对美元(varepsilon)的指数依赖使得对美元(varepsilon=0.1美元)的记忆也变得不切实际。我们简化了算法和分析,使美元(varepsilon)的依赖性(特别是美元//craepsilon)得到指数性改进。为了扩大这些技术,我们还在美元(k/k/\varepsilon)的记忆中为非分子函数提供了简单的($(1/e-e- varepsilon) 美元支持。对于单行算算法中,我们给出了相应的无条件的硬度障碍屏障屏障屏障屏障屏障屏障1-1/euu-ureepsluslonlonlonon 用于随机流中,甚至假设地计算。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
一文道尽softmax loss及其变种
极市平台
14+阅读 · 2019年2月19日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月18日
Arxiv
0+阅读 · 2022年1月16日
Arxiv
0+阅读 · 2022年1月14日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
一文道尽softmax loss及其变种
极市平台
14+阅读 · 2019年2月19日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员