Likelihood ratios (LRs), which are commonly used for probabilistic data processing, are often estimated based on the frequency counts of individual elements obtained from samples. In natural language processing, an element can be a continuous sequence of $N$ items, called an $N$-gram, in which each item is a word, letter, etc. In this paper, we attempt to estimate LRs based on $N$-gram frequency information. A naive estimation approach that uses only $N$-gram frequencies is sensitive to low-frequency (rare) $N$-grams and not applicable to zero-frequency (unobserved) $N$-grams; these are known as the low- and zero-frequency problems, respectively. To address these problems, we propose a method for decomposing $N$-grams into item units and then applying their frequencies along with the original $N$-gram frequencies. Our method can obtain the estimates of unobserved $N$-grams by using the unit frequencies. Although using only unit frequencies ignores dependencies between items, our method takes advantage of the fact that certain items often co-occur in practice and therefore maintains their dependencies by using the relevant $N$-gram frequencies. We also introduce a regularization to achieve robust estimation for rare $N$-grams. Our experimental results demonstrate that our method is effective at solving both problems and can effectively control dependencies.
翻译:在自然语言处理中,一个要素可以是连续的以美元为单位的项目序列,每个项目都称为美元,每个项目都是单词、字母等。在本文中,我们试图根据美元-克频率信息来估计以美元-克频率计算的单位成本。一种仅使用美元-克频率的天真的估计方法对低频(拉里)美元-克频率十分敏感,而不适用于零频(未观测)美元-克;在自然语言处理中,一个要素可以是连续的以美元为单位要素的美元-克项目序列;在自然语言处理中,一个要素可以是连续的以美元为单位要素,一个连续的序列,一个名为美元-克,称为美元-克,一个名为美元-克,一个名为美元-克,一个名为美元-克,一个名为美元-克,一个名为美元-克,一个名为美元-克,一个名为美元-克,一个名为美元-克,一个名为美元-克,一个名为美元-克,一个名为美元-克,一个名为美元-克,一个名为美元-克,一个名为美元-克,一个用于单位频率的单位频率的单位频率的频率,一个名为 " 数 " 数 " 数 " 数 " 数 " 的 " 方法 ",一个 " 的 ",一个称为 ",一个称为低频率-方,一个称为 ",一个名为 ",一个称为低频率 -- -- -- -- " 的 " 的 " 的 ",一个称为低频率,一个 ",一个称为低频率 -- -- -- -- -- --,一个称为低频率,一个 ",一个称为低频率,一个称为低频率,一个 ",一个称为 ",一个 " 或 " 零和零频率 -- -- -- 的 " 的 " 的 " 的 " 的 ",一个称为 " 或 ",一个 " 的 ",一个 " 的 ",一个 ",一个 " 方法,一个称为 " 或 " 方法,一个称为 " 问题,一个称为 " 方法,一个 ",一个 ",一个 " 的 " 的 " 方法,一个 ",一个 ",一个称为 " 或 ",一个 " 零频率 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --