We investigate the set of invariant idempotent probabilities for countable idempotent iterated function systems (IFS) defined in compact metric spaces. We demonstrate that, with constant weights, there exists a unique invariant idempotent probability. Utilizing Secelean's approach to countable IFSs, we introduce partially finite idempotent IFSs and prove that the sequence of invariant idempotent measures for these systems converges to the invariant measure of the original countable IFS. We then apply these results to approximate such measures with discrete systems, producing, in the one-dimensional case, data series whose Higuchi fractal dimension can be calculated. Finally, we provide numerical approximations for two-dimensional cases and discuss the application of generalized Higuchi dimensions in these scenarios.
翻译:暂无翻译