Over the past 50 years, conventional network routing design has undergone substantial growth, evolving from small networks with static nodes to large systems connecting billions of devices. This progress has been achieved through the separation of concerns principle, which entails integrating network functionalities into a graph or random network design and employing specific network protocols to facilitate diverse communication capabilities. This paper aims to highlight the potential of designing routing techniques for quantum networks, which exhibit unique properties due to quantum mechanics. Quantum routing design requires a substantial deviation from conventional network design protocols since it must account for the unique features of quantum entanglement and information. However, implementing these techniques poses significant challenges, such as decoherence and noise in quantum systems, restricted communication ranges, and highly specialized hardware prerequisites. The paper commences by examining essential research on quantum routing design methods and proceeds to cover fundamental aspects of quantum routing, associated quantum operations, and the steps necessary for building efficient and robust quantum networks. This paper summarizes the present state of quantum routing techniques, including their principles, protocols, and challenges, highlighting potential applications and future directions.


翻译:在过去的50年里,传统的网络路由设计经历了长足的发展,从静态节点的小型网络到连接数十亿设备的大型系统。这一进展是通过关注点分离原则实现的,该原则涉及将网络功能集成到图形或随机网络设计中,并利用特定的网络协议实现各种通信能力。本文旨在凸显为量子网络设计路由算法的潜力,因为量子力学给量子网络带来了独特的特性。量子路由设计需要与传统的网络设计协议相差很大,因为它必须考虑量子纠缠和信息的独特特性,但是,实现这些技术存在重大挑战,例如量子系统中的退相干和噪声,通信范围受限以及高度专业化的硬件要求。本文从量子路由设计方法的重要研究开始,接着介绍了量子路由的基本概念,相关的量子操作以及构建高效和健壮的量子网络所必须遵循的步骤。本文总结了当前量子路由技术的现状,包括其原则、协议和挑战,凸显了潜在的应用和未来的方向。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【2020新书】数据科学与机器学习导论,220页pdf
专知会员服务
80+阅读 · 2020年9月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月15日
Arxiv
0+阅读 · 2023年6月15日
Arxiv
0+阅读 · 2023年6月13日
Arxiv
0+阅读 · 2023年6月13日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【2020新书】数据科学与机器学习导论,220页pdf
专知会员服务
80+阅读 · 2020年9月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员