This paper formalizes the source-blind knowledge distillation problem that is essential to federated learning. A new geometric perspective is presented to view such a problem as aligning generated distributions between the teacher and student. With its guidance, a new architecture MEKD is proposed to emulate the inverse mapping through generative adversarial training. Unlike mimicking logits and aligning logit distributions, reconstructing the mapping from classifier-logits has a geometric intuition of decreasing empirical distances, and theoretical guarantees using the universal function approximation and optimal mass transportation theories. A new algorithm is also proposed to train the student model that reaches the teacher's performance source-blindly. On various benchmarks, MEKD outperforms existing source-blind KD methods, explainable with ablation studies and visualized results.
翻译:本文正式确定了对联合学习至关重要的源盲知识蒸馏问题。 提出了一种新的几何视角,以观察将师生之间产生的分布相匹配的问题。 根据该文件的指导,提出了一个新的架构MEKD,以通过基因对抗训练来效仿反向映射。 与模拟逻辑和对逻辑分布相匹配不同的是,从分类记录中重建映射具有实验距离缩小的几何直觉,以及使用通用功能近似和最佳大众运输理论的理论保障。 还提出了一种新的算法,以培训学生模型,该模型可以盲目地接触到教师的性能源。在各种基准上,MEKD优于现有的源盲KD方法,可以用反向研究和可视结果来解释。