The advent of Web 3.0, claiming for personalization in interactive systems (Lassila & Hendler, 2007), and the need for systems capable of interacting in a more natural way in the future society flooded with computer systems and devices (Harper et al., 2008) show that great advances in HCI should be done. This chapter presents some contributions of LIA for the future of HCI, defending that using common sense knowledge is a possibility for improving HCI, especially because people assign meaning to their messages based on their common sense and, therefore, the use of this knowledge in developing user interfaces can make them more intuitive to the end-user. Moreover, as common sense knowledge varies from group to group of people, it can be used for developing applications capable of giving different feedback for different target groups, as the applications presented along this chapter illustrate, allowing, in this way, interface personalization taking into account cultural issues. For the purpose of using common sense knowledge in the development and design of computer systems, it is necessary to provide an architecture that allows it. This chapter presents LIAs approaches for common sense knowledge acquisition, representation and use, as well as for natural language processing, contributing with those ones who intent to get into this challenging world to get started.


翻译:Web 3.0在互动系统中主张个性化的出现(Lassila & Hendler,2007年),以及需要能够在未来社会中更自然地互动的系统,这些系统充斥着计算机系统和设备(Harper等人,2008年)表明,HCI应该取得巨大进步。本章介绍了LIA对HCI的未来做出的一些贡献,指出使用常识知识是改进HCI的一个可能,特别是因为人们根据其常识对其信息赋予意义,因此,在开发用户界面时使用这种知识可以使其对终端用户更具直觉性。此外,由于常识知识因群体而异,因此可以用来开发能够向不同目标群体提供不同反馈的应用,正如本章提出的应用表明,通过这种方式,可以将个人化与文化问题联系起来。为了在开发和设计计算机系统时使用常识知识的目的,有必要提供一个允许它使用的架构。本章介绍了LIAs获取、表达和使用常识和使用的方法,作为向世界带来挑战的初衷,并开始与那些具有挑战性的语言处理者一起为世界做出贡献。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
92+阅读 · 2020年2月28日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员