The strong impulse to digitize processes and operations in companies and enterprises have resulted in the creation and automatic recording of an increasingly large amount of process data in information systems. These are made available in the form of event logs. Process mining techniques enable the process-centric analysis of data, including automatically discovering process models and checking if event data conform to a given model. In this paper, we analyze the previously unexplored setting of uncertain event logs. In such event logs uncertainty is recorded explicitly, i.e., the time, activity and case of an event may be unclear or imprecise. In this work, we define a taxonomy of uncertain event logs and models, and we examine the challenges that uncertainty poses on process discovery and conformance checking. Finally, we show how upper and lower bounds for conformance can be obtained by aligning an uncertain trace onto a regular process model.
翻译:将公司和企业的流程和运行数字化的强烈动力已导致信息系统中越来越多的流程数据的创建和自动记录,这些数据以事件日志的形式提供。进程采矿技术使得能够对数据进行以程序为中心的分析,包括自动发现流程模型和检查事件数据是否符合给定模式。在本文件中,我们分析了先前未探索的不确定事件日志设置。在这种情况下,记录不确定性被明确记录下来,即一个事件的时间、活动和案例可能不明确或不准确。在这项工作中,我们界定了不确定事件日志和模型的分类,我们研究了不确定性对程序发现和合规检查构成的挑战。最后,我们展示了如何通过将不确定的追踪与经常进程模式接轨来获得一致性的上限和下限。