In this paper, we consider the problem of power control for a wireless network with an arbitrarily time-varying topology, including the possible addition or removal of nodes. A data-driven design methodology that leverages graph neural networks (GNNs) is adopted in order to efficiently parametrize the power control policy mapping the channel state information (CSI) to transmit powers. The specific GNN architecture, known as random edge GNN (REGNN), defines a non-linear graph convolutional filter whose spatial weights are tied to the channel coefficients. While prior work assumed a joint training approach whereby the REGNN-based policy is shared across all topologies, this paper targets adaptation of the power control policy based on limited CSI data regarding the current topology. To this end, we propose both black-box and modular meta-learning techniques. Black-box meta-learning optimizes a general-purpose adaptation procedure via (stochastic) gradient descent, while modular meta-learning finds a set of reusable modules that can form components of a solution for any new network topology. Numerical results validate the benefits of meta-learning for power control problems over joint training schemes, and demonstrate the advantages of modular meta-learning when data availability is extremely limited.
翻译:在本文中,我们考虑的是具有任意时间变化的表层学的无线网络的电源控制问题,包括可能增加或删除节点。采用了一种数据驱动设计方法,利用图形神经网络(GNNSs)来有效地对电源控制政策进行配对,以绘制频道国家信息(CSI)以传输权力。具体的GNN(称为随机边缘GNN(REGNN))架构,称为随机边缘GNN(随机边缘GNN(REGNN)),定义了非线性图形共生过滤器,空间重量与频道系数挂钩。先前的工作假定了一种联合培训方法,即基于REGNN(RGNNN)的政策在所有表层之间共享,而本文的目标是根据有限的CSI(CSI)数据调整电源控制政策。为此,我们提出了黑箱和模块化元学习技术来传输权力。 黑盒学习模式优化了一般用途的适应程序,通过(偏差)梯底(Gechchatical)梯落,而模块元学习发现一套可再使用模块模块模块模块模块模块模块模块模块模块,可以构成任何新的网络表理学解决方案的构成解决方案的构成部分。耐敏化结果验证了在超级电源控制方面优势上学习的好处。