We study boundary integral formulations for an interior/exterior initial boundary value problem arising from the thermo-elasto-dynamic equations in a homogeneous and isotropic domain. The time dependence is handled, based on Lubich's approach, through a passage to the Laplace domain. We focus on the cases where one of the unknown fields satisfies a Dirichlet boundary condition, while the other one is subject to conditions of Neumann type. In the Laplace domain, combined single- and double-layer potential boundary integral operators are introduced and proven to be coercive. Based on the Laplace domain estimates, it is possible to prove the existence and uniqueness of solutions in the time domain. This analysis complements previous results that may serve as the mathematical foundation for discretization schemes based on the combined use of the boundary element method and convolution quadrature.
翻译:我们研究在同质和异色域内、外等离子体动力方程式引起的内部/外部初始边界值问题的边界一体化配方;根据Lubich的方法,通过通向Laplace域的通道处理时间依赖性;我们着重研究一个未知字段满足Drichlet边界条件的情况,而另一个字段则受制于Neumann类型的情况;在Laplace域,引入了单一和双层潜在边界整体操作员,并证明其具有胁迫性;根据Laplace域估计数,有可能证明时间域内解决办法的存在和独特性;这一分析补充了以前的结果,这些结果可作为基于混合使用边界要素法和演化二次变形的离散计划的数学基础。