We provide two hybrid numeric-symbolic optimization algorithms, computing exact sums of nonnegative circuits (SONC) and sums of arithmetic-geometric-exponentials (SAGE) decompositions. Moreover, we provide a hybrid numeric-symbolic decision algorithm for polynomials lying in the interior of the SAGE cone. Each framework, inspired by previous contributions of Parrilo and Peyrl, is a rounding-projection procedure. For a polynomial lying in the interior of the SAGE cone, we prove that the decision algorithm terminates within a number of arithmetic operations, which is polynomial in the number of terms of the input, and linear in the distance to the boundary of the cone. We also provide experimental comparisons regarding the implementation of the two optimization algorithms.
翻译:我们提供两种混合数字-同步优化算法,计算非阴性电路(SONC)的精确数和算术-地球测量-损耗分解数(SAGE)的精确数;此外,我们为位于SAGE锥体内部的多数值计算法提供了一种混合数字-共性决定算法;每个框架,受Parrilo和Peyrl先前贡献的启发,是一个圆形预测程序。对于位于SAGE锥体内部的多数值计算法,我们证明决定算法在数计算操作中终止,在输入数方面是多数值的,在离锥体边界的距离方面是线性。我们还就两种优化算法的实施提供实验性比较。