The rapid development of mobile Internet and sharing economy brings the prosperity of spatial crowdsourcing. Spatial crowdsourcing (SC) applications assign various tasks based on workers'location information. However, SC-servers are often untrustworthy and the exposure of users'locations raises privacy concerns. In this paper, we design a framework Geo-MOEA (Multi-Objective Evolutionary Algorithm with Geo-obfuscation) to protect location privacy of workers involved on SC platform in mobile networks environment. We propose an adaptive regionalized obfuscation approach with inference error bounds based on geo-indistinguishability (a strong notion of differential privacy), which is suitable for the context of large-scale location data and task allocations. This enables each worker to report a pseudo-location that is adaptively generated with a personalized inference error threshold. Moreover, we introduce MOEA to optimize the trade-off between SC service availability and privacy protection while confirming theoretically the most general condition on protection location sets for larger search space. Finally, the experimental results on two public datasets show that our Geo-MOEA approach achieves up to 20% reduction in service quality loss while guaranteeing differential and geo-distortion location privacy.
翻译:移动互联网和共享经济的快速发展带来了空间众包的繁荣。空间众包(SC)应用根据工人的定位信息分配了各种任务。然而,SC服务器往往不可信,用户定位的暴露也引起了隐私问题。在本文件中,我们设计了一个框架Geo-MOEA(与Geo-obfusscation一起的多客观进化进化算法),以保护在移动网络环境中参与SC平台的工人的定位隐私。我们建议采用适应性的区域化混淆方法,根据地理不易分化性(一种强烈的差别隐私概念)来推断出错误界限,这适合于大规模定位数据和任务分配的背景。这使得每个工人都能报告一个因个人化推导误差阈值而适应产生的假地址。此外,我们介绍MOEA来优化SC服务提供和隐私保护之间的交易,同时从理论上确认对更大的搜索空间的保护地点设置的最一般条件。最后,两个公共数据集的实验结果显示,我们的Geo-MOEA方法在保证降低地球隐私权到20 %的定位时,实现了地理-MOEA服务质量差异。