Artificial Neural Networks (ANNs) have emerged as hot topics in the research community. Despite the success of ANNs, it is challenging to train and deploy modern ANNs on commodity hardware due to the ever-increasing model size and the unprecedented growth in the data volumes. Particularly for microarray data, the very-high dimensionality and the small number of samples make it difficult for machine learning techniques to handle. Furthermore, specialized hardware such as Graphics Processing Unit (GPU) is expensive. Sparse neural networks are the leading approaches to address these challenges. However, off-the-shelf sparsity inducing techniques either operate from a pre-trained model or enforce the sparse structure via binary masks. The training efficiency of sparse neural networks cannot be obtained practically. In this paper, we introduce a technique allowing us to train truly sparse neural networks with fixed parameter count throughout training. Our experimental results demonstrate that our method can be applied directly to handle high dimensional data, while achieving higher accuracy than the traditional two phases approaches. Moreover, we have been able to create truly sparse MultiLayer Perceptrons (MLPs) models with over one million neurons and to train them on a typical laptop without GPU, this being way beyond what is possible with any state-of-the-art techniques.


翻译:人工神经网络(ANNs)已成为研究界的热题。尽管ANNs取得了成功,但由于模型规模不断增加,数据量空前增长,对商品硬件的现代ANNs进行培训和部署是一项艰巨的任务。特别是对于微小数据,非常高的维度和少量的样本使得机器学习技术难以处理。此外,像图形处理股这样的专门硬件成本很高。微小的神经网络是应对这些挑战的主导方法。然而,由于非NNNs的成功,对商品硬件进行现代ANNS的培训和部署是十分困难的。尽管非NNNs成功,由于模型规模日益增大,数据数量空前增加,数据数量空前增长,对商品硬件进行现代ANNNS的培训和部署也是困难的。在本文中,我们引入了一种技术,使我们能够在训练真正稀疏的神经网络时使用固定的参数计数。我们的实验结果表明,我们的方法可以直接用于处理高维数据,同时实现比传统的两个阶段方法更高的准确性。此外,我们得以在超过一百万个典型的G型计算机模型上建立真正稀疏多的GPercron模型。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
99+阅读 · 2020年1月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
13+阅读 · 2019年11月14日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
5+阅读 · 2018年6月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
13+阅读 · 2019年11月14日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
5+阅读 · 2018年6月5日
Top
微信扫码咨询专知VIP会员