Big data analysis has become a crucial part of new emerging technologies such as the internet of things, cyber-physical analysis, deep learning, anomaly detection, etc. Among many other techniques, dimensionality reduction plays a key role in such analyses and facilitates feature selection and feature extraction. Randomized algorithms are efficient tools for handling big data tensors. They accelerate decomposing large-scale data tensors by reducing the computational complexity of deterministic algorithms and the communication among different levels of the memory hierarchy, which is the main bottleneck in modern computing environments and architectures. In this paper, we review recent advances in randomization for the computation of Tucker decomposition and Higher Order SVD (HOSVD). We discuss random projection and sampling approaches, single-pass, and multi-pass randomized algorithms, and how to utilize them in the computation of the Tucker decomposition and the HOSVD. Simulations on synthetic and real datasets are provided to compare the performance of some of the best and most promising algorithms.


翻译:大数据分析已成为诸如物的互联网、网络物理分析、深学习、异常现象探测等新兴技术的关键部分。 在许多其他技术中,减少维度在这类分析中发挥着关键作用,有利于地貌选择和特征提取。随机算法是处理大数据压强的有效工具。它们通过减少确定性算法的计算复杂性和记忆层不同层次之间的交流加速了大规模数据分解过程,而记忆层是现代计算环境和结构中的主要瓶颈。在本文中,我们审查了计算塔克分解和高级命令SVD(HOSVD)的随机化的最新进展。我们讨论了随机投影和抽样方法、单轴和多轴随机算法,以及如何在计算塔克分解和HOSVD时使用这些数据。提供了合成和真实数据集的模拟,以比较一些最佳和最有希望的算法的性。

0
下载
关闭预览

相关内容

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
【2021新书】高阶网络,150页pdf,Higher-Order Networks
专知会员服务
87+阅读 · 2021年11月26日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
9+阅读 · 2021年4月8日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
【2021新书】高阶网络,150页pdf,Higher-Order Networks
专知会员服务
87+阅读 · 2021年11月26日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员