We propose Latent-Shift -- an efficient text-to-video generation method based on a pretrained text-to-image generation model that consists of an autoencoder and a U-Net diffusion model. Learning a video diffusion model in the latent space is much more efficient than in the pixel space. The latter is often limited to first generating a low-resolution video followed by a sequence of frame interpolation and super-resolution models, which makes the entire pipeline very complex and computationally expensive. To extend a U-Net from image generation to video generation, prior work proposes to add additional modules like 1D temporal convolution and/or temporal attention layers. In contrast, we propose a parameter-free temporal shift module that can leverage the spatial U-Net as is for video generation. We achieve this by shifting two portions of the feature map channels forward and backward along the temporal dimension. The shifted features of the current frame thus receive the features from the previous and the subsequent frames, enabling motion learning without additional parameters. We show that Latent-Shift achieves comparable or better results while being significantly more efficient. Moreover, Latent-Shift can generate images despite being finetuned for T2V generation.


翻译:本文提出了一种高效的文本到视频生成方法,名为“潜移”(Latent-Shift)。该方法利用预先训练的文本到图像生成模型,其中包括自编码器和U-Net扩散模型。在潜在空间中学习视频扩散模型比在像素空间中学习更加高效。后者往往限于首先生成低分辨率视频,然后经过一系列帧插值和超分辨率模型,使整个流程非常复杂和计算密集。为了将U-Net从图像生成扩展到视频生成,先前的研究提出了添加额外的模块,如1D时空卷积和/或时空注意层。相比之下,我们提出了一种无需参数的时间移位模块,可以将空间U-Net不加修改地用于视频生成。我们通过将特征映射通道的两个部分沿时间维度向前和向后移动来实现这一点。因此,当前帧的移位特征接收前一帧和后一帧的特征,实现了运动学习而无需额外的参数。我们证明,潜移模型在效率方面可比或更好,同时具有可生成图像的优点,尽管该模型是针对T2V生成微调的。

1
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
0+阅读 · 2023年6月1日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员