Learning-based edge detection has hereunto been strongly supervised with pixel-wise annotations which are tedious to obtain manually. We study the problem of self-training edge detection, leveraging the untapped wealth of large-scale unlabeled image datasets. We design a self-supervised framework with multi-layer regularization and self-teaching. In particular, we impose a consistency regularization which enforces the outputs from each of the multiple layers to be consistent for the input image and its perturbed counterpart. We adopt L0-smoothing as the 'perturbation' to encourage edge prediction lying on salient boundaries following the cluster assumption in self-supervised learning. Meanwhile, the network is trained with multi-layer supervision by pseudo labels which are initialized with Canny edges and then iteratively refined by the network as the training proceeds. The regularization and self-teaching together attain a good balance of precision and recall, leading to a significant performance boost over supervised methods, with lightweight refinement on the target dataset. Furthermore, our method demonstrates strong cross-dataset generality. For example, it attains 4.8% improvement for ODS and 5.8% for OIS when tested on the unseen BIPED dataset, compared to the state-of-the-art methods.
翻译:以学习为基础的边缘探测已经受到严格监督, 并配有像素提示式的说明, 这些说明很乏味手动获取。 我们研究自我训练边缘探测问题, 利用尚未开发的大量大型无标签图像数据集。 我们设计了一个多层正规化和自我教学的自我监督框架。 特别是, 我们强制实行一致性规范化, 强制执行多个层的输出, 以使输入图像及其周围的对应方保持一致 。 我们采用 L0 吸附为“ 扰动 ”, 以鼓励在自我监督学习的集群假设之后的突出边界上进行边缘预测。 同时, 网络受到多层监督, 由假标签进行多层监督, 这些标签先由Canny边缘初始化, 然后由网络在培训过程中进行迭接式的完善。 校正和自导一起实现精确和回顾的良好平衡, 导致在目标数据集上进行轻量精细的精细的改进。 此外, 我们的方法显示了强烈的交叉数据配置通用性。 例如, 当对Oscar- IP 数据进行4.8% 的改进时, 将 Osa- gread- develop- development the das- develop- develop- das for the GMS- sal- vial- vial- vial- sal- gard- vial- sal- das